NCERT Solutions for Class 12 Maths Chapter 2 Exercise 2.2 (Inverse Trigonometric Function)

Author at PW
April 23, 2025
image

Class 12 Maths Chapter 2 Exercise 2.2 Inverse Trigonometric Function:- Inverse Trigonometric Functions are the inverses of the basic trigonometric functions like sine, cosine, and tangent, allowing us to determine angles from given trigonometric ratios. These functions are essential in solving equations involving trigonometric expressions. Exercise 2.2 in Chapter 2 of Class 12 Maths involves evaluating these functions, proving related identities, and solving equations. For instance, 

Sin βˆ’ 1(12)sin βˆ’1 ( 21​ ) evaluates to πœ‹66π​ , as sin⁑30∘=12sin30 ∘ = 21. The mastery of this chapter is crucial for advanced applications in calculus and other mathematical analyses. Get the detailed NCERT Solutions for Class 12 Maths Chapter 2 Exercise 2.2 Inverse Trigonometric Function below.

NCERT Solutions for Class 12 Maths Chapter 2 Exercise 2.2 Inverse Trigonometric Function

Read the Class 12 Maths Chapter 2 Exercise 2.2 Inverse Trigonometric Function NCERT Solutions below. 

Question1.chapter 2-Inverse Trigonometric Function Exercise 2.1/image001.png

Solution :

chapter 2-Inverse Trigonometric Function Exercise 2.1

Proved.

Checkout Class 12th Sample Papers from PW Store

Question2.chapter 2-Inverse Trigonometric Function Exercise 2.1/image010.png

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image011.png

Proved.

Question3.chapter 2-Inverse Trigonometric Function Exercise 2.1/image017.png

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image018.png

Proved.

Question4.chapter 2-Inverse Trigonometric Function Exercise 2.1/image024.png

Solution :

chapter 2-Inverse Trigonometric Function Exercise 2.1/image027.png

Proved.

NCERT Solutions for Class 12 Maths Chapter 1 Exercise 1.2

Write the following functions in the simplest form:

Question5.chapter 2-Inverse Trigonometric Function Exercise 2.1/image032.png

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image036.png

NCERT Solutions for Class 12 Maths Chapter 1 Exercise 1.3

Question6. chapter 2-Inverse Trigonometric Function Exercise 2.1/image043.png

Solution :

chapter 2-Inverse Trigonometric Function Exercise 2.1/image044.png

NCERT Solutions for Class 12 Maths Chapter 1 Exercise 1.4

Question7.chapter 2-Inverse Trigonometric Function Exercise 2.1/image053.png

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image054.png

Question8.chapter 2-Inverse Trigonometric Function Exercise 2.1/image058.png

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image059.png

Question9.chapter 2-Inverse Trigonometric Function Exercise 2.1/image065.png

Solution :

NCERT Solutions class 12 Maths Inverse Trigonometric Function

Question10.chapter 2-Inverse Trigonometric Function Exercise 2.1/image073.png

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image074.png

Find the values of each of the following:

Question11.chapter 2-Inverse Trigonometric Function Exercise 2.1/image083.png

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image083.png

Question12.chapter 2-Inverse Trigonometric Function Exercise 2.1/image090.png

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image090.png

Question13.chapter 2-Inverse Trigonometric Function Exercise 2.1/image093.png

Solution :

NCERT Solutions class 12 Maths Inverse Trigonometric Function

Question14. If chapter 2-Inverse Trigonometric Function Exercise 2.1/image103.pngthen find the value of x

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image104.png

NCERT Solutions class 12 Maths Inverse Trigonometric Function

Question15. Ifchapter 2-Inverse Trigonometric Function Exercise 2.1/image110.pngthen find the value of x

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image111.png

Find the values of each of the expressions in Exercises 16 to 18.

Question16. chapter 2-Inverse Trigonometric Function Exercise 2.1/image121.png

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image121.png

Question17. chapter 2-Inverse Trigonometric Function Exercise 2.1/image126.png

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image126.png

Question18.chapter 2-Inverse Trigonometric Function Exercise 2.1/image132.png

Solution :

NCERT Solutions class 12 Maths Inverse Trigonometric Function

Question19.

chapter 2-Inverse Trigonometric Function Exercise 2.1/image146.png

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image146.png

Question20. chapter 2-Inverse Trigonometric Function Exercise 2.1/image153.pngis equal to:

(A) 1/2

(B) 1/3

(C) 1/4

(D) 1

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image157.png

Therefore, option (D) is correct.

Question21.chapter 2-Inverse Trigonometric Function Exercise 2.1/image162.pngis equal to:

(A) Ο€

(B) -Ο€/2

(C) 0

(D) 2√3

Solution :
chapter 2-Inverse Trigonometric Function Exercise 2.1/image162.png

Therefore, option (B) is correct

Check out: CBSE Class 12th Books

Class 12 Maths Chapter 2 Exercise 2.2 Inverse Trigonometric Function Summary

1. Inverse Trigonometric Functions

Inverse trigonometric functions, or arctrigonometric functions, are introduced to find the angle whose trigonometric ratio (sine, cosine, or tangent) is a given number.

2. Common Inverse Trigonometric Functions

The three most commonly encountered inverse trigonometric functions are:

  • Sine Inverse: denoted by sin⁻¹(x) or arcsin(x)

  • Cosine Inverse: denoted by cos⁻¹(x) or arccos(x)

  • Tangent Inverse: denoted by tan⁻¹(x) or arctan(x)

3. Important Points

  • Inverse trigonometric functions are defined only for specific input value ranges. This is because the original trigonometric functions (sine, cosine, tangent) have periodic repetitions. For instance, sine function repeats its values every 2Ο€. Therefore, to ensure a unique output angle for a given sine value, we restrict the input range for the sine inverse function.

  • The range of sin(x) is [-1, 1], and correspondingly, the range of arcsin(x) is also [-1, 1]. Similar restrictions apply to other inverse trigonometric functions.

Check out: Class 12th Question Banks

Class 12 Maths Chapter 2 Exercise 2.2 Inverse Trigonometric Function FAQs

Q1. What are Inverse Trigonometric Functions?

Ans. Inverse Trigonometric Functions are the inverses of trigonometric functions like sine, cosine, and tangent, used to find angles from given trigonometric ratios.

Q2. What is the principal value branch?

Ans. The principal value branch is the range within which the inverse trigonometric functions are defined to be single-valued. For example, 

sinβˆ’1π‘₯sin βˆ’1 x is defined for [βˆ’πœ‹2,πœ‹2][βˆ’ 2π​ , 2π​ ].

Q3. How do you prove identities involving inverse trigonometric functions?

Ans. Identities can be proved using known trigonometric identities, properties of inverse functions, and algebraic manipulation.

Q4. What is the domain and range of tan βˆ’1π‘₯tan βˆ’1 x?

Ans. The domain of tan βˆ’1π‘₯tan βˆ’1 x is all real numbers (βˆ’βˆž,∞)(βˆ’βˆž,∞) and the range is (βˆ’πœ‹2,πœ‹2)(βˆ’ 2π​ , 2π​ ).

Q5. How are inverse trigonometric functions used in calculus?

Ans. They are used in integration and differentiation, for example, ∫11βˆ’π‘₯2𝑑π‘₯=sinβ‘βˆ’1π‘₯+𝐢∫ 1βˆ’x 2 ​ 1​ dx=sin βˆ’1 x+C.

This site uses cookies to improve your experience. By clicking, you agree to our Privacy Policy.